skip to main content


Search for: All records

Creators/Authors contains: "Cho, Hanna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Characterization of bone quality during the healing process is crucial for successful implantation procedures and patient comfort. In this study, a bone implant specimen that underwent a 4-week healing period was investigated. Bimodal atomic force microscopy (AFM) was employed to simultaneously obtain the morphology and elastic modulus maps of the newly formed and pre-existing bone regions within the sample. Results indicate that the new bone matrix possessed lower mineralization levels and presented larger, uneven mineral grains, exhibiting the attributes of a woven bone. On the other hand, the old bone matrix exhibited a more uniform and mineralized structure, which is characteristic of lamellar bones. The new bone had a lower overall elastic modulus than the old bone. Bimodal AFM further confirmed that the new bone displayed three regions comprising unmineralized, partially mineralized, and fully matured sections, which indicate a turbulent change in its composition. Meanwhile, the old bone exhibited two sections comprising partially mineralized and matured bone parts, which denote the final phase of mineralization. This study provides valuable insights into the morphological and nanomechanical differences between the old and new bone matrixes and presents a novel approach to investigate bone quality at different phases of the bone-healing process.

     
    more » « less
  2. Abstract

    Intrafibrillar mineralization plays a critical role in attaining desired mechanical properties of bone. It is well known that amorphous calcium phosphate (ACP) infiltrates into the collagen through the gap regions, but its underlying driving force is not understood. Based on the authors’ previous observations that a collagen fibril has higher piezoelectricity at gap regions, it was hypothesized that the piezoelectric heterogeneity of collagen helps ACP infiltration through the gap. To further examine this hypothesis, the collagen piezoelectricity of osteogenesis imperfecta (OI), known as brittle bone disease, is characterized by employing Piezoresponse Force Microscopy (PFM). The OI collagen reveals similar piezoelectricity between gap and overlap regions, implying that losing piezoelectric heterogeneity in OI collagen results in abnormal intrafibrillar mineralization and, accordingly, losing the benefit of mechanical heterogeneity from the fibrillar level. This finding suggests a perspective to explain the ACP infiltration, highlighting the physiological role of collagen piezoelectricity in intrafibrillar mineralization.

     
    more » « less
  3. Evaporation patterns of liquid droplets containing nanoparticles or colloids have extensive applications in diagnostics and printing. Controlling these patterns by studying the evaporation behavior of colloidal droplets on surfaces is important for enhancing sensing platforms. In this study, A liquid‐repellent microcavity surface is introduced to robustly capture deposited analytic particles. The proposed microcavity surface maintains stable air pockets for liquid repellency and strong pinning for the spatial stabilization of the evaporating droplet, thereby resulting in a coffee‐ring concentration. This microcavity surface also acts as a “microcontainer” for the deposited particles, thereby protecting them against external damage. To demonstrate the multifaceted capabilities of microcavity surfaces, further comparison is done of three different surface structures, planar, micropillared, and that with microcavities in a hexagonal arrangement, by analyzing their evaporation dynamics and dried deposit patterns. The microcavity surface exhibits superior particle capture, thereby revealing its applicability in on‐site testing. Using the direct rapid sampling of analytical materials, the potential of the fabricated microcavity surface for point‐of‐care testing is demonstrated. The proposed microcavity surfaces suggest new avenues for the development of more robust and sensitive sensing platforms.

     
    more » « less
  4. null (Ed.)
    Abstract Exploiting nonlinear characteristics in micro/nanosystems has been a subject of increasing interest in the last decade. Among others, vigorous intermodal coupling through internal resonance (IR) has drawn much attention because it can suggest new strategies to steer energy within a micro/nanomechanical resonator. However, a challenge in utilizing IR in practical applications is imposing the required frequency commensurability between vibrational modes of a nonlinear micro/nanoresonator. Here, we experimentally and analytically investigate the 1:2 and 2:1 IR in a clamped–clamped beam resonator to provide insights into the detailed mechanism of IR. It is demonstrated that the intermodal coupling between the second and third flexural modes in an asymmetric structure (e.g., nonprismatic beam) provides an optimal condition to easily implement a strong IR with high energy transfer to the internally resonated mode. In this case, the quadratic coupling between these flexural modes, originating from the stretching effect, is the dominant nonlinear mechanism over other types of geometric nonlinearity. The design strategies proposed in this paper can be integrated into a typical micro/nanoelectromechanical system (M/NEMS) via a simple modification of the geometric parameters of resonators, and thus, we expect this study to stimulate further research and boost paradigm-shifting applications exploring the various benefits of IR in micro/nanosystems. 
    more » « less
  5. Abstract

    Posterior capsule opacification (PCO) is the most common complication of cataract surgery, and intraocular lens (IOL) implantation is the standard of care for cataract patients. Induction of postoperative epithelial‐mesenchymal transition (EMT) in residual lens epithelial cells (LEC) is the main mechanism by which PCO forms. Previous studies have shown that IOLs made with different materials have varying incidence of PCO. The aim of this paper was to study the interactions between human (h)LEC and polymer substrates. Polymers and copolymers of 2‐hydroxyethyl methacrylate (HEMA) and 3‐methacryloxypropyl tris(trimethylsiloxy)silane (TRIS) were synthesized and evaluated due to the clinical use of these materials as ocular biomaterials and implants. The chemical properties of the polymer surfaces were evaluated by contact angle, and polymer stiffness and roughness were measured using atomic force microscopy. In vitro studies showed the effect of polymer mechanical properties on the behavior of hLECs. Stiffer polymers increased α‐smooth muscle actin expression and induced cell elongation. Hydrophobic and rough polymer surfaces increased cell attachment. These results demonstrate that attachment of hLECs on different surfaces is affected by surface properties in vitro, and evaluating these properties may be useful for investigating prevention of PCO.

     
    more » « less
  6. null (Ed.)